The influence of beam model differences in the comparison of dose calculation algorithms for lung cancer treatment planning.
نویسندگان
چکیده
In this study, we show that beam model differences play an important role in the comparison of does calculated with various algorithms for lung cancer treatment planning. These differences may impact the accurate correlation of dose with clinical outcome. To accomplish this, we modified the beam model penumbral parameters in an equivalent path length (EPL) algorithm and subsequently compared the EPL doses with those generated with Monte Carlo (MC). A single AP beam was used for beam fitting. Two different beam models were generated for EPL calculations: (1) initial beam model (init_fit) and (2) optimized beam model (best_fit) , with parameters optimized to produce the best agreement with MC calculated profiles at several depths in a water phantom. For the 6 MV, AP beam, EPL(init_fit) calculations were on average within 2%/2 mm (1.4 mm max.) agreement with MC; the agreement for EPL(best_fit) was 2%/1.0 mm (1.3 mm max.) for EPL(best_fit). Treatment planning was performed using a realistic lung phantom using 6 and 15 MV photons. In all homogeneous phantom plans, EPL(best_fit) calculations were in better agreement with MC. In the heterogeneous 6 MV plan, differences between EPL(best_fit and init_fit) and MC were significant for the tumour. The EPL(init_fit), unlike the EPL(best_fit) calculation, showed large differences in the lung relative to MC. For the 15 MV heterogeneous plan, clinically important differences were found between EPL(best_fit or init_fit) and MC for tumour and lung, suggesting that the algorithmic difference in inhomogeneous cases, differences between EPL(best_fit) and MC for lung tissues were smaller compared to those between EPL(init_fit) and MC. Although the extent to which beam model differences impact the dose comparisons will be dependent upon beam parameters (orientation, field size and energy), and the size and location of the tumour, this study shows that failing to correctly account for beam model differences will lead to biased comparisons between dose algorithms. This may ultimately hinder our ability to accurately correlate dose with clinical outcome.
منابع مشابه
Dosimetric Evaluation of Dose calculation algorithms of Monaco Treatment Planning System in the heterogeneities area
Introduction: In radiation therapy, the accuracy of dose calculations by a treatment planning system (TPS) is important to achieve tumor control and to spare normal tissue. Treatment planning system calculations in the heterogeneous situation may present significant inaccuracies. In this study, three different dose calculation algorithms, pencil beam (PB), collapsed cone (CC), ...
متن کاملAssessment of two different dose distribution algorithms (Clarkson and Superposition) in PCRT3D treatment planning system for Esophagus Cancer by using 3DCRT technique
Introduction: The functionality and quality of any treatment planning system (TPS) strongly depends on the type of Algorithm which is used by it. Obviously, the role of dose distribution algorithms in calculation of prescribed dose inside the tumor in modern radiotherapy techniques has more important than past to achieve the best clinical outcomes, especially in tumors which ar...
متن کاملEvaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...
متن کاملDose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code
Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...
متن کاملCalculation and Comparison of Heart Integral Dose in The Treatment of Esophagus Cancer with Three Photon Energies & Using CT Simulation and Treatment Planning System
Introduction: Esophageal cancer is one of the most frequently occurring cancers in Iran and having a high incidence rate among other countries. Radiotherapy is one of the three methods (surgery, radiotherapy and chemotherapy) for radical or palliative treatment of esophageal cancer. In this method of treatment, the organs such as heart and spinal cord are regarded as organs at r...
متن کاملCalculation of absorbed dose in lung tissue equivalent and compared it with prediction of a treatment planning system using Collapsed Cone Convolution algorithm
External radiotherapy is used for treatment of various types of cancers. Due to the impossibility of measuring the absorbed dose delivered to different organs during irradiation, treatment planning systems (TPSs) have been utilized for calculation of absorbed dose before a radiotherapy procedure. Thus, the accuracy and precession of the TPS is essential.The aim of this study is investigation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 50 5 شماره
صفحات -
تاریخ انتشار 2005